515nm-manufacture,factory,supplier from China

(Total 24 Products for 515nm)
Readily available stock of periodically poled MgO:LN crystals can be provided on short timescales to rapidly meet your application needs, providing the capability to efficiently generate laser light in a wide range of wavelengths.MgO:PPLN SHG crystals are available for a wide range of common pump laser wavelengths from 976 nm to 2100 nm, allowing generation of light between 488nm and 1050nm.MgO:PPLN OPO are available for 515nm and 1064nm pump sources, allowing continuous wavelength generation in a selection of ranges in the visible and IR.MgO: PPLN DFG Crystals are available for
Contactar ahora
Polarizer is a kind of optical filter where the light transmission depends strongly on the polarization state. Normally, light with linear polarization in a certain direction is passed, and light polarized in an orthogonal direction is either absorbed or propagated to a different direction.For other directions of linear polarization with an angle θ against the“passing”direction, the transmission exhibits a cos2 θ dependence. That can be understood by considering that linear polarization state as a linear superposition of the "passing”and the“blocked”state.Most polarizers act
Contactar ahora
Optical Lenses are designed to focus or diverge light and for imaging or alignment in an optical system. Optical Lenses, which may consist of a single or multiple elements, have a variety of applications. Lens forms can be divided into simple lenses (which include plano-convex lens, plano-concave lens, double-convex lens, double-concave lens, cylinder lens, drum lens, spherical lens in different shapes), achromatic lenses compound lens and multiple types.
Contactar ahora
Wisoptic’s optical mirrors are available for use with light in the UV, VIS, and IR spectral regions. Optical mirrors with a metallic coating have high reflectivity over the widest spectral region, whereas mirrors with a broadband dielectric coating have a narrower spectral range of operation; the average reflectivity throughout the specified region is greater than 99%.
Contactar ahora
Polarizing Beamsplitters (PBS) splits incident unpolarized light into two perpendicular linearly polarized light. Among them, p-polarized light passes through completely, while s-polarized light is reflected at 45 deg which makes the emitting direction of s-light vertical to p-light. Additionally, beamsplitters can be used in reverse to combine two different beams into a single one. Beamsplitters are often classified according to their construction:cube or plate.Cube PBS are fabricated using two typically right angle prisms.
Contactar ahora
Polarization is an important characteristic of light. Polarizers are key optical elements for controlling your polarization, transmitting a desired polarization state while reflecting, absorbing or deviating the rest. There is a wide variety of polarizer designs, each with its own advantages and disadvantages.
Contactar ahora
KDP (KH2PO4 ) and DKDP/KD*P (KD2PO4 ) are among the most widely-used commercial NLO materials. With good UV transmission, high damage threshold, and high birefringence, these material are usually used for doubling, tripling and quadrupling of Nd:YAG laser. With high E-O coefficient, KDP and DKDP crystals are also widely used to make Pockels cells for laser system, such as Nd:YAG, Nd:YLF, Ti-Sapphire, Alexandrite, etc.
Contactar ahora
RTP possesses a large electro-optic impact for light propagating along either the x or y direction (electric powered along z). It functions right optical transparency from around 400nm to over 4µm. RTP offers a high resistance to optical damage with energy ~1Gw/cm2 for 1ns pulses at 1064nm. It is largely total lack of piezo-electric resonances at 200kHz and probable beyond. The primary distinction between RTP and BBO whilst used for Q-switching pertains to the common power degree at which the Q-switch is capable of be used practically.
Contactar ahora
Right angle prisms are generally used to bend image paths or redirect light at 90°. This produces a left handed image and depending on the orientation of the prism, the image may be inverted or reverted.
Contactar ahora
An aspherical lens features a non-spherical but rotationally symmetric shape with a curvature radius that changes at various points between the center and the edge. Although producing this type of lens is difficult, when manufactured properly, it offers greater functionality than a comparable spherical lens.Spherical Lenses vs. Aspherical LensesSpherical lenses have a spherical surface and the same radius of curvature across the entire lens. In contrast, aspherical lenses have a more complicated surface with a gradually changing curvature from center to edge.
Contactar ahora
Potassium Dihydrogen Phosphate (KDP) and Potassium Dideuterium Phosphate (KD*P, DKDP) crystals are among the most widley used nonlinear crystals. Both of these crystals are routinely used for the doubling, triplingand quadrupling of Nd:YAG lasers at room temperatures.
Contactar ahora
A wave plate, also called a phase retarder, is an optical device that changes the polarization state of light by generating an optical path difference (or phase difference) between two mutually orthogonal polarization components. When the incident light passes through wave plates with different types of parameter, the exit light is different, which may be linearly polarized light, elliptically polarized light, circularly polarized light, etc.
Contactar ahora
Waveplates (retardation plates or phase shifters) are made from optical materials  with precise thickness such as quartz, calcite or mica, which exhibit birefringence. The velocities of the extraordinary and ordinary rays through the birefringent materials vary inversely with their refractive indices. The difference in velocities gives rise to a phase difference when the two beams recombine.
Contactar ahora
Phase retardation plates, or waveplates, are polarizing optics used to manipulate the polarization state of the transmitting light without attenuating, deviating, or displacing the light. The working principle of the plate is to utilize the birefringence of certain materials which separates the incident light beam into two beams along two orthogonal optical axes within the medium. The phase retardation between the two beams of the incident light contributes to changes in the polarization state.
Contactar ahora
High temperature phase BBO (alpha-BBO, a-BBO) is a negative uniaxial crystal with a large birefringence over the broad transparent range from 189 nm to 3500 nm. The physical, chemical, thermal, and optical properties of alpha-BBO crystal are similar to those of the low temperature phase beta-BBO crystal. However, there is no second order nonlinear effect in alpha-BBO crystal due to the centrosymmetry in its crystal structure and thus it has no use for second order nonlinear optical processes.
Contactar ahora
Pockels Cell Driver for Q-Switching of Flashlamp Pumped LasersThese drivers are designed for Q-switching of nanosecond flashlamp pumped lasers without use of phase retardation plates, for example to drive a DKDP Pockels cell in YAG lasers for aesthetic therapy. High voltage is applied to Pockels cell in order to inhibit oscillation.
Contactar ahora
HGTR (High Grey Track Resistance) KTP crystal developed by hydrothermal method overcomes the common phenomenon of electrochromism of the flux-grown KTP, thus has many advantages such as high electrical resistivity, low insertion loss, low half-wave voltage, high laser damage threshold, and wide transmission band.
Contactar ahora
LiNbO3 crystal is a low cost photoelectric material with good mechanical and physical properties as well as high optical homogeneity. It has been widely used as frequency doublers for wavelength > 1mm and optical parametric oscillators (OPOs) pumped at 1064nm as well as quasi-phase-matched (QPM) devices. With preferable E-O coefficients, LiNbO3 crystal has become the most commonly used material for Q-switches and phase modulators, waveguide substrate, and surface acoustic wave (SAW) wafers, etc.
Contactar ahora
KTP Pockels are based on hydrothermal-grown high resistivity KTP crystals overcomes the common electrochromism damage of flux-grown KTP. Hydrothermal-grown KTP crystals have better optical homogeneity and higher damage threshold comparing to RTP crystals. This KTP crystal has large effective electro-optic coefficients and lower half-wave voltage. The Q-switch is built utilizing thermally compensated double crystal designs.
Contactar ahora
The improved hydrothermal-grown KTP crystal overcomes the common electrochromism damage of flux-grown KTP. The hydrothermal-grown KTP (HGTR-KTP, or GTR-KTP) has high damage threshold, large effective electro-optic coefficients and lower half-wave voltage.  KTP EO Q-switches made by HGTR-KTP crystals utilize thermally compensated double crystal designs. They are mainly used in pulse lasers with narrow pulse width and high repetition frequency.
Contactar ahora
RTP Pockels cell has a number of benefits compared to other electro-optic materials:Non hygroscopicLow switching voltageGood extinction ratioNo piezo and pyro-electric effectsUsed either as RTP Q-switch or RTP pulsepicker WISOPTIC has developed precise alignment techniques that enable us to offer our customers complete, plug-and-play RTP Pockels cell assemblies with a superior level of performance.Crystal Size4x4x10 mm6x6x10 mm8x8x10 mmQuantity of Crystals222Static Half-wave Voltage @ 1064 nmX-cut: 1700 VY-cut: 1400 VX-cut: 2500 VY-cut: 2100 VX-cut: 3300 VY-cut: 2750 VE
Contactar ahora
LN crystals are nonhygroscopic and have low absorption coefficient and insert loss. In addition, LN crystal can operate stably in a wide temperature range, which makes them the main EO crystal applied in military laser systems.LN electro-optic Q-switches are widely used in Er:YAG, Ho:YAG, Tm:YAG lasers, and are suitable for low-power Q-switched output, especially in laser ranging. LN Pockels cells can be very compact, and the half-wave voltage can be very low. By doping MgO in LiNbO3, the damage threshold of LN Pockels cells can been increased dramatically.
Contactar ahora
A corner cube (or cube corner), also known as a retroreflector, is an optical component with the unique ability to return an incoming beam of light directly towards its point of origin regardless of the beam's angle of entry. This property makes this prism type ideal for a wide variety of applications, such as laser resonator cavities, land surveying, ground based range-finding, satellite communications and space vehicle docking.Wisoptic offer a wide variety of retroreflectors at competitive prices and lead times, and are able to accommodate the most demanding requirements.
Contactar ahora
Optical beamsplitters play a vital role in many laser-based measurement and positioning systems. Although the operation of a typical beamsplitter is conceptually simple, its performance characteristics can dramatically affect the accuracy and repeatability of the overall system. Consequently, understanding the variables that distinguish beamsplitter performance is an important step in comparing and specifying components.
Contactar ahora
Relate News
In 1962, the American scientist McClung F J reported for the first time that the silver mirror of the ruby laser resonator had hole burning damage, which was the first public report on the laser damage of optical components. The subsequent invention of Q-switching technology and mode-locking technology increased the peak power of laser pulses by several orders of magnitude. The problem of laser damage runs through and affects the design and operation of lasers, and promotes the development of optical materials and optical component manufacturing technologies.
The Asia Photonics Expo (APE) is a holistic photonics platform for branding and business connection, focusing on the latest cutting-edge innovative technologies and the emerging application markets in Asia, aiming to promote the in-depth communication and business collaboration between photonics upstream and downstream professionals.WISOPTIC will show its hot products supplying to the  whole world (EU, USA, UK, Asia, etc.) and looking forward to meeting new friends as well as its "old" business partners all over the world.
04 Theoretical study of thermal properties As can be seen from Figure 5 (a), when the BBO crystal (www.wisoptic.com) matching temperature is 60 ℃, as the 266 nm deep ultraviolet laser power gradually increases from 0.32 W to 1.24 W, 2.09 W and 2.25 W, the fitted nonlinear absorption coefficient βNLA also increases continuously, from 0 to 0.079, 0.128, and 0.189 cm/GW, respectively.
WISOPTIC is using its newly-set coating machine to do in-house vacuum coatings on crystals and optical components.With our own coating machine and technique, we can provide customers products with excellent quality, e.g. higher surface quality, higher transmittance, and higher LIDT etc.Sorts of dielectric coatings (e.g. AR, HR, PR) are available for crystals (KDP/DKDP, KTP, RTP, BBO, LBO, LN, Nd:YAG, etc) and optical components (laser windows, mirrors, PBS, etc).
Experimental SetupIn order to obtain a 266 nm deep ultraviolet laser with high efficiency and stable operation, this paper built an all-solid-state 266 nm deep ultraviolet laser generation device as shown in Figure 1, which consists of a cavity-dumped all-solid-state Nd:YVO4 laser, a double-frequency system, and a quadruple-frequency system.Fig.
3 The main application of lithium tantalate crystal3.3 E-O Q-SwitchThe basis of laser Q-switched technology is a special optical component - a fast intracavity optical switch generally called Q-switch. The Q value is an indicator for evaluating the quality of the optical resonant cavity. The higher the Q value, the lower the required pump threshold and the easier it is for the laser to oscillate. The purpose of laser Q-switching technology is to compress the pulse width and increase the peak power.
03 Experimental results and analysisBy optimizing the cavity length parameters of Nd:YVO4 (www.wisoptic.com) laser under high-power pump injection, a 1064 nm high peak power narrow pulse laser output with an average power of 26 W, a repetition frequency of 20 kHz, and a single pulse width of 5 ns was obtained when the 888 nm pump light power was 65 W; after the 1064 nm fundamental frequency infrared light was doubled by the LBO crystal, a 532 nm laser with a maximum power of 16 W was finally obtained, and the infrared to green light conversion efficiency reached 61.5%.
Conclusion Considering comprehensive factors such as wide absorption bandwidth, large absorption cross section, long upper energy level lifetime (ms to tens of ms) (see Table 2), ion cross relaxation, increased quantum efficiency, and mature LD pump source, Tm3+ in the 2 μm band, Ho3+ and Er3+ in the 3 μm band must be one of the most important and basic laser sources in the mid-infrared band from 2 to 20 μm, and will compete with Nd3+ and Yb3+ in the 1 μm band.
Laser damage induced by microscopic defects in optical componentsNodule defect is a typical representative of microscopic defects, and it is one of the main discoveries in the study of laser damage to thin films in the 1990s. At present, a lot of research has been done on the electric field enhancement and damage characteristics of nodule defects and artificially implanted nodule defects. The damage mechanism of nodular defects has been deeply understood.The nodule defect is the main cause of damage to the fundamental frequency dielectric membrane element.
2.1 Manipulating and understanding laser damage precursors through material growth processesCombined with the statistical model, information such as precursor density and threshold distribution can be extracted from the damage probability curve, which indirectly reflects the information of the precursor. The analysis shows that the KDP crystal (www.wisoptic.com) mainly contains a precursor with a threshold distribution.
x

Enviado satisfactoriamente

Nos pondremos en contacto con usted tan pronto como sea posible

cerca