2094nm-manufacture,factory,supplier from China

(Total 24 Products for 2094nm)
Potassium Dihydrogen Phosphate (KDP) and Potassium Dideuterium Phosphate (KD*P, DKDP) crystals are among the most widley used nonlinear crystals. Both of these crystals are routinely used for the doubling, triplingand quadrupling of Nd:YAG lasers at room temperatures.
Contactar ahora
E-O Q-switch based on DKDP (KD*P) crystals are one of the most popular Pockels cells in the market.Deuterated potassium dihydrogen phosphate has good transmission from 390 nm to 1400 nm (0.39 μm – 1.4 μm) and combined with high electro-optical coefficients makes it suitable for Pockels cells.Highly deuterated DKDP (D>99% – WISOPTIC) is necessary to reach effective electro-optical response.
Contactar ahora
Characterized by the excelent UV transmission, high damage threshold, and high birefringence, KDP (Potassium Dihydrogen Phosphate)  and KD*P (Potassium Dideuterium Phosphate) are useful commercial NLO materials for doubling, tripling and quadrupling of Nd:YAG laser at room temperature or an elevated temperature. They are also excellent electro-optic (EO) crystals with high electro-optic coefficients, widely used as electro-optical modulators and Pockels cells for Q-switched lasers.
Contactar ahora
Solid Laser DyesThere is some work on dye lasers based on solid media, e.g.
Contactar ahora
A prism, in optics, is a piece of glass or other transparent object surrounded by two planes that intersect but are not parallel to each other. The most important parameters of a prism are the angle and material.  Prisms are capable to redirect light at a designated angle or adjust the orientation of an image. Therefore prism is useful for in certain spectroscopes, instruments for analyzing light and for determining the identity and structure of materials that emit or absorb light. An optical prism’s design determines how light interacts with it.
Contactar ahora
A right angle prism is an optical prism designed to deviate light by 90° or 180°, depending on the orientation of the prism and the face through which light enters. The joining edges and faces are perpendicular to the base faces, and all joining faces are rectangular. They are often  preferable to plane mirrors, because they are easier to mount and align.
Contactar ahora
Corner cube prisms are optics which act as corner reflectors. The basic operation principle is that there are internal reflections on three mutually orthogonal prism surfaces, producing a direction of a reflected beam which is nominally parallel to the direction of the incident beam – with the accuracy limited only by the accuracy of the surface orientation of the prism. Precision prisms can offer excellent parallelism of incoming and reflecting beams. It is usually specified as an angular deviation, e.g.
Contactar ahora
Optical Prisms are widely used to redirect light at a designated angle. They are ideal for ray deviation, or for adjusting the orientation of an image. An optical prism’s design determines how light interacts with it. When light enters an optical prism, it either reflects off an individual surface or several surfaces before exiting, or is refracted as it travels through the substrate.  WISOPTIC offers a wide range of optical prisms with various designs, substrates, or coatings.
Contactar ahora
Thin Film Polarizers are made from composed materials which include a polarizing film, an inner protective film, a pressure-sensitive adhesive layer, and an outer protective film. Polarizer is used to change un-polarized beam into linear polarized beam.
Contactar ahora
Waveplates (retardation plates or phase shifters) are made from optical materials  with precise thickness such as quartz, calcite or mica, which exhibit birefringence. The velocities of the extraordinary and ordinary rays through the birefringent materials vary inversely with their refractive indices. The difference in velocities gives rise to a phase difference when the two beams recombine.
Contactar ahora
Wisoptic' standard and precision quality laser windows are fabricated from a variety of substrate materials, e.g.  UVFS and N-BK7. They are available either with or without AR coatings, and with dia from 12.5 to 101.6 mm and thickness from 1 to 15 mm. Also we offer uncoated rectangular windows with aperture from 15 x 20 to 50.8 x 50.8 mm and thickness from 2 to 10 mm.
Contactar ahora
A corner cube (or cube corner), also known as a retroreflector, is an optical component with the unique ability to return an incoming beam of light directly towards its point of origin regardless of the beam's angle of entry. This property makes this prism type ideal for a wide variety of applications, such as laser resonator cavities, land surveying, ground based range-finding, satellite communications and space vehicle docking.Wisoptic offer a wide variety of retroreflectors at competitive prices and lead times, and are able to accommodate the most demanding requirements.
Contactar ahora
Optical windows are made in the form of flat plates of a transparent medium that allow light into an instrument. Windows have high optical transmission with little distortion of the transmitted signal, but can not change the magnification of the system.
Contactar ahora
WISOPTIC use in-house made dye laser cells to make dye laser handpieces. Pure input beam at 532nm is required to produce output beams of 585nm/595nm (energy over 100 mJ) and 650nm/660nm (energy over 80 mJ).
Contactar ahora
Thin film polarizers are based on interference within a dielectric optical thin-film coating on a thin glass substrate. They are made from composed materials which include a polarizing film, an inner protective film, a pressure-sensitive adhesive layer, and an outer protective film. Thin film polarizers are used for polarization separation, that's to say to change un-polarized beam into linear polarized beam.
Contactar ahora
Dye laser headpiece made from WISOPTIC has very high conversion efficiency: 65%~75% for 532/585nm, 45%~55% for 532/650nm.
Contactar ahora
Polymer-matrix Gain Medium for Pulsed Dye Laser (PDL)Polymer matrix can be used to make solid laser gain medium of dye lasers.  Compared with the commonly used liquid-state dye laser unit, the solid-state material has many advantages, such as the convenience of handling, the various options of dimensions and shapes. But the dye molecules in the polymer matrix might degradate in a limited time by triplet excitation, or even destruct permanently. To avoid this shortage, WISOPTIC provides long quality guarantee period of every piece of Dye Laser Cell/Rod made in-house.
Contactar ahora
Polarization optics is important for both intra and extra cavity use. By using high contrast thin film polarizers in their design, laser engineers can save weight and volume within the laser system without influencing the output. Compared with polarizing prisms, polarizers have larger incident angle and can be made with larger apertures. Compared with polarizers made from birefringent crystals, the advantage of thin film polarizers made from UVFS or N-BK7 is that they can be fabricated in very large sizes, therefore are particularly well suited for high laser powers and UV wavelengths.
Contactar ahora
Thin Film Polarizers are made from composed materials which include a polarizing film, an inner protective film, a pressure-sensitive adhesive layer, and an outer protective film. Polarizer is used to change un-polarized beam into linear polarized beam.
Contactar ahora
Optical filter is usually a component with a wavelength-dependent transmittance or reflectance. It's used to selectively transmit or reject a wavelength or range of wavelengths.  Filters with particularly weak wavelength dependence of the transmittance are called neutral density filters. The general applications of optical filters include fluorescence microscopy, spectroscopy, clinical chemistry, machine vision inspection, etc. Bandpass interference filters are designed to transmit a portion of the spectrum, while rejecting all other wavelengths.
Contactar ahora
Polarizing Beamsplitters (PBS) are designed to split light by polarization state rather than by wavelength or intensity. PBS are often used in semiconductor or photonics instrumentation to transmit p-polarized light while reflecting s-polarized light. Optical isolators use PBS to eliminate feedback-induced damage. PBS are typically designed for 0° or 45° angle of incidence with a 90° separation of the beams, depending on the configuration.WISOPTIC offers a wide variety of PBS in a range of configurations including plate, cube, or lateral displacement.
Contactar ahora
Optical beamsplitters play a vital role in many laser-based measurement and positioning systems. Although the operation of a typical beamsplitter is conceptually simple, its performance characteristics can dramatically affect the accuracy and repeatability of the overall system. Consequently, understanding the variables that distinguish beamsplitter performance is an important step in comparing and specifying components.
Contactar ahora
When classified by coatings, Optical Mirrors consist of dielectric mirrors and metallic mirrors. Dielectric mirror is an optical mirror made of thin layers of dielectric coating layers deposited on an optical substrate (UVFS or BK7). WISOPTIC offer dielectric laser mirrors for laser lines, for narrowband or broadband wavelength ranges covering spectrum from UV to IR. Metallic mirrors are coated with protected gold, silver, or aluminum. Metallic mirrors are widely used due to a moderate level of reflection over a very broad spectral range.
Contactar ahora
Optical lenses can be made in many shapes and may be comprised of a single element or form constituent parts of a multi-element compound lens system. They are used to focus light and images, produce magnification, correct optical aberrations and for projection, mainly controlling the focus or divergence light used in instrumentation, microscopy and laser applications.
Contactar ahora
Relate News
In 1962, the American scientist McClung F J reported for the first time that the silver mirror of the ruby laser resonator had hole burning damage, which was the first public report on the laser damage of optical components. The subsequent invention of Q-switching technology and mode-locking technology increased the peak power of laser pulses by several orders of magnitude. The problem of laser damage runs through and affects the design and operation of lasers, and promotes the development of optical materials and optical component manufacturing technologies.
3 The main application of lithium tantalate crystal3.1 SAW Wave filterYang Qing-rui and others designed a resonator SAW filter using LiTaO3/SiO2/Si substrate. Figures 3 and 4 are optical photos of the device and partial scanning electron microscopy pictures of the device respectively. The interdigitated electrodes of the device in the picture are clear and no adhesion is seen.
Study on the efficiency and temperature robustness of chirped PPLN crystal in 1064nm frequency doubling experiment - 06  4. Experimental Result and Analysis4.2 Temperature robustness comparison between CPPLN and LBOWhen the input 1064nm light is 22.53W, the curves of the frequency-doubled optical power generated by CPPLN (www.wisoptic.com) and LBO (www.wisoptic.com) with temperature are shown in Figure 5(a) and Figure 5(b). The half-maximum full width of the frequency-doubled optical power of CPPLN with respect to temperature is 8.40℃, ranging from 24.19℃ to 32.59℃.
After more than one year’s research work, WISOPTIC has successfully developed two types of dye laser cells – 585nm and 650nm.With advanced technique of coating and optical system design, dye laser headpiece has been developed and will be in mass production soon.Dye laser headpiece 585nm is used mainly to treat facial telangiectasia, and dye laser headpiece 650nm for removal of green tattoo, etc.Dye laser headpiece made from WISOPTIC has higher conversion efficiency than that of any competing product.
Nanoscale laser damage precursorsDifferent from microscopic defects, defects are called precursors here. Defects generally refer to observable microstructures that are different from the characteristics of the surrounding matrix materials, and are often observed by optical microscopy. The precursors mentioned in this article generally cannot be directly observed by optical methods, and there is no obvious difference in characteristics from the surrounding matrix materials.
Laser damage induced by microscopic defects in optical componentsAccording to the above numerical analysis results, it can be seen that cracks may be generated around the nodule seed and propagate along the radial direction.
Laser damage induced by microscopic defects in optical componentsNodule defect is a typical representative of microscopic defects, and it is one of the main discoveries in the study of laser damage to thin films in the 1990s. At present, a lot of research has been done on the electric field enhancement and damage characteristics of nodule defects and artificially implanted nodule defects. The damage mechanism of nodular defects has been deeply understood.The nodule defect is the main cause of damage to the fundamental frequency dielectric membrane element.
2.2 Theoretical inversion cognition of precursor characteristics through damage morphologyThe typical damage morphology of multilayer dielectric films with picosecond pulse in the fundamental frequency band is high-density and small-scale. In order to understand the destruction process, we designed a multi-layer dielectric film system with high fundamental frequency and high reflection, and used a 1064 nm 30 ps laser to conduct a destruction experiment. Figure 9 shows a typical damage morphology.
Based on the basic principles of laser damage, researchers have found a breaking through point to solve the problem of laser damage to optical components. But it is very difficult to effectively suppress the source of laser damage in the manufacturing process. Given the variety and complexity of the manufacturing process of optical components, it is necessary to establish the link between the defect formation and the manufacturing process.
3 The main application of lithium tantalate crystal3.3 E-O Q-SwitchThe basis of laser Q-switched technology is a special optical component - a fast intracavity optical switch generally called Q-switch. The Q value is an indicator for evaluating the quality of the optical resonant cavity. The higher the Q value, the lower the required pump threshold and the easier it is for the laser to oscillate. The purpose of laser Q-switching technology is to compress the pulse width and increase the peak power.
x

Enviado satisfactoriamente

Nos pondremos en contacto con usted tan pronto como sea posible

cerca